Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Nature ; 626(7998): 313-318, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38326591

RESUMEN

Calcium-oxygen (Ca-O2) batteries can theoretically afford high capacity by the reduction of O2 to calcium oxide compounds (CaOx) at low cost1-5. Yet, a rechargeable Ca-O2 battery that operates at room temperature has not been achieved because the CaOx/O2 chemistry typically involves inert discharge products and few electrolytes can accommodate both a highly reductive Ca metal anode and O2. Here we report a Ca-O2 battery that is rechargeable for 700 cycles at room temperature. Our battery relies on a highly reversible two-electron redox to form chemically reactive calcium peroxide (CaO2) as the discharge product. Using a durable ionic liquid-based electrolyte, this two-electron reaction is enabled by the facilitated Ca plating-stripping in the Ca metal anode at room temperature and improved CaO2/O2 redox in the air cathode. We show the proposed Ca-O2 battery is stable in air and can be made into flexible fibres that are weaved into textile batteries for next-generation wearable systems.

2.
Adv Mater ; 35(24): e2301549, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37058392

RESUMEN

Urea oxidation reaction (UOR) is an ideal replacement of the conventional anodic oxygen evolution reaction (OER) for efficient hydrogen production due to the favorable thermodynamics. However, the UOR activity is severely limited by the high oxidation potential of Ni-based catalysts to form Ni3+ , which is considered as the active site for UOR. Herein, by using in situ cryoTEM, cryo-electron tomography, and in situ Raman, combined with theoretical calculations, a multistep dissolution process of nickel molybdate hydrate is reported, whereby NiMoO4 ·xH2 O nanosheets exfoliate from the bulk NiMoO4 ·H2 O nanorods due to the dissolution of Mo species and crystalline water, and further dissolution results in superthin and amorphous nickel (II) hydroxide (ANH) flocculus catalyst. Owing to the superthin and amorphous structure, the ANH catalyst can be oxidized to NiOOH at a much lower potential than conventional Ni(OH)2 and finally exhibits more than an order of magnitude higher current density (640 mA cm-2 ), 30 times higher mass activity, 27 times higher TOF than those of Ni(OH)2 catalyst. The multistep dissolution mechanism provides an effective methodology for the preparation of highly active amorphous catalysts.

3.
Adv Sci (Weinh) ; 9(34): e2204742, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36270971

RESUMEN

Highly efficient electrochemical water splitting is of prime importance in hydrogen energy but is suffered from the slow kinetics at the anodic oxygen evolution reaction. Herein, combining the surface activation with the heterostructure construction strategy, the CoP/Fe-Co9 S8 heterostructures as the pre-catalyst for highly efficient oxygen evolution are successfully synthesized. The catalyst only needs 156 mV to reach 10 mA cm-2 and keeps stable for more than 150 h. Inductively coupled plasma optical emission spectrometry, in situ Raman spectroscopy and density functional theory calculations verify that the introduction of Fe can promote the formation of highly active Co(IV)-O sites and lead to a self-termination of surface reconstruction, which eventually creates a highly active and stable oxygen evolution catalytic surface. Besides, the catalyst also demonstrates high hydrogen evolution reaction activity with an overpotential of 62 mV@10 mA cm-2 . Benefiting from its bifunctionality and self-supporting property, the membrane electrode assembly electrolyzer equipped with these catalysts achieves high overall water splitting efficiency of 1.68 V@1 A cm-2 .

4.
Nat Commun ; 13(1): 4871, 2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-35982041

RESUMEN

Oxygen evolution reaction (OER) consists of four sequential proton-coupled electron transfer steps, which suffer from sluggish kinetics even on state-of-the-art ruthenium dioxide (RuO2) catalysts. Understanding and controlling the proton transfer process could be an effective strategy to improve OER performances. Herein, we present a strategy to accelerate the deprotonation of OER intermediates by introducing strong Brønsted acid sites (e.g. tungsten oxides, WOx) into the RuO2. The Ru-W binary oxide is reported as a stable and active iridium-free acidic OER catalyst that exhibits a low overpotential (235 mV at 10 mA cm-2) and low degradation rate (0.014 mV h-1) over a 550-hour stability test. Electrochemical studies, in-situ near-ambient pressure X-ray photoelectron spectroscopy and density functional theory show that the W-O-Ru Brønsted acid sites are instrumental to facilitate proton transfer from the oxo-intermediate to the neighboring bridging oxygen sites, thus accelerating bridging-oxygen-assisted deprotonation OER steps in acidic electrolytes. The universality of the strategy is demonstrated for other Ru-M binary metal oxides (M = Cr, Mo, Nb, Ta, and Ti).

5.
Chemistry ; 28(8): e202103141, 2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-34734654

RESUMEN

Traditional regulation methods of active sites have successfully optimized the performance of electrocatalysts, but seem unable to achieve further breakthrough in the catalytic activity. Unlike the conventional viewpoint of focusing on single active site, the concept of local microstructure active zone is more comprehensive and new methods to regulate the reaction zone for electrocatalytic reactions are developed accordingly. The local microstructure active zone refers to the zone with high catalytic activity formed by the interaction between active atoms and neighboring coordination atoms as well as the surrounding environment. Instead of the traditional single active atom site, the active zone is more suitable for the actual electrochemical reaction process. According to this concept, the activity of electrocatalysts can be coordinated by multiple active atoms. This strategy is beneficial for understanding the relationship between material, structure, and catalysis, which realizes the design and synthesis of high-performance electrocatalysts. This review provides the research progress of this strategy for electrocatalytic reactions, with emphasis on their applications in oxygen evolution reaction, urea oxidation reaction, and carbon dioxide reduction.


Asunto(s)
Oxígeno , Urea , Catálisis , Dominio Catalítico , Oxidación-Reducción
6.
ChemistryOpen ; 10(6): 639-644, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34102039

RESUMEN

The electrochemical conversion of carbon dioxide (CO2 ) to carbon monoxide (CO) is a favorable approach to reduce CO2 emission while converting excess sustainable energy to important chemical feedstocks. At high current density (>100 mA cm-2 ), low energy efficiency (EE) and unaffordable cell cost limit the industrial application of conventional CO2 electrolyzers. Thus, a crucial and urgent task is to design a new type of CO2 electrolyzer that can work efficiently at high current density. Here we report a polymer-supported liquid layer (PSL) electrolyzer using polypropylene non-woven fabric as a separator between anode and cathode. Ag based cathode was fed with humid CO2 and potassium hydroxide was fed to earth-abundant NiFe-based anode. In this configuration, the PSL provided high-pH condition for the cathode reaction and reduced the cell resistance, achieving a high full cell EE over 66 % at 100 mA cm-2 .

7.
J Am Chem Soc ; 143(17): 6482-6490, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33891414

RESUMEN

In hydrogen production, the anodic oxygen evolution reaction (OER) limits the energy conversion efficiency and also impacts stability in proton-exchange membrane water electrolyzers. Widely used Ir-based catalysts suffer from insufficient activity, while more active Ru-based catalysts tend to dissolve under OER conditions. This has been associated with the participation of lattice oxygen (lattice oxygen oxidation mechanism (LOM)), which may lead to the collapse of the crystal structure and accelerate the leaching of active Ru species, leading to low operating stability. Here we develop Sr-Ru-Ir ternary oxide electrocatalysts that achieve high OER activity and stability in acidic electrolyte. The catalysts achieve an overpotential of 190 mV at 10 mA cm-2 and the overpotential remains below 225 mV following 1,500 h of operation. X-ray absorption spectroscopy and 18O isotope-labeled online mass spectroscopy studies reveal that the participation of lattice oxygen during OER was suppressed by interactions in the Ru-O-Ir local structure, offering a picture of how stability was improved. The electronic structure of active Ru sites was modulated by Sr and Ir, optimizing the binding energetics of OER oxo-intermediates.

8.
Angew Chem Int Ed Engl ; 60(19): 10577-10582, 2021 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-33629447

RESUMEN

In electrochemical energy storage and conversion systems, the anodic oxygen evolution reaction (OER) accounts for a large proportion of the energy consumption. The electrocatalytic urea oxidation reaction (UOR) is one of the promising alternatives to OER, owing to its low thermodynamic potential. However, owing to the sluggish UOR kinetics, its potential in practical use has not been unlocked. Herein, we developed a tungsten-doped nickel catalyst (Ni-WOx ) with superior activity towards UOR. The Ni-WOx catalyst exhibited record fast reaction kinetics (440 mA cm-2 at 1.6 V versus reversible hydrogen electrode) and a high turnover frequency of 0.11 s-1 , which is 4.8 times higher than that without W dopants. In further experiments, we found that the W dopant regulated the local charge distribution of Ni atoms, leading to the formation of Ni3+ sites with superior activity and thus accelerating the interfacial catalytic reaction. Moreover, when we integrated Ni-WOx into a CO2 flow electrolyzer, the cell voltage is reduced to 2.16 V accompanying with ≈98 % Faradaic efficiency towards carbon monoxide.

9.
Nat Commun ; 11(1): 3685, 2020 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-32703956

RESUMEN

Multi-carbon alcohols such as ethanol are valued as fuels in view of their high energy density and ready transport. Unfortunately, the selectivity toward alcohols in CO2/CO electroreduction is diminished by ethylene production, especially when operating at high current densities (>100 mA cm-2). Here we report a metal doping approach to tune the adsorption of hydrogen at the copper surface and thereby promote alcohol production. Using density functional theory calculations, we screen a suite of transition metal dopants and find that incorporating Pd in Cu moderates hydrogen adsorption and assists the hydrogenation of C2 intermediates, providing a means to favour alcohol production and suppress ethylene. We synthesize a Pd-doped Cu catalyst that achieves a Faradaic efficiency of 40% toward alcohols and a partial current density of 277 mA cm-2 from CO electroreduction. The activity exceeds that of prior reports by a factor of 2.

10.
Adv Mater ; 32(31): e2002297, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32584508

RESUMEN

Developing efficient electrocatalysts for oxygen evolution reaction (OER) in pH-neutral electrolyte is crucial for microbial electrolysis cells and electrochemical CO2 reduction. Unfortunately, the OER kinetics in neutral electrolyte is sluggish due to the low concentration of adsorbed reactants, with overpotentials of neutral OER at present much higher than that in acidic or alkaline electrolyte. Here, hydrated metal cations (Ca2+ ) are sought to be incorporated into the state-of-the-art Ru-Ir binary oxide to tailor the surface oxygen environments (lattice-oxygen and adsorbed oxygen species) for efficient neutral OER. Using a sol-gel method, ternary Ru-Ir-Ca oxides are synthesized in atomically homogenous manner, and the obtained catalyst on glassy carbon electrode achieves 10 mA cm-2 at a low overpotential of 250 mV, with no degradation for 200 h of operation. In situ X-ray absorption spectroscopy, in situ 18 O isotope-labeling differential electrochemical mass spectrometry, and 18 O isotope-labeling secondary ion mass spectroscopy studies are carried out. The results reveal that incorporation of Ca2+ can enhance the covalency of metal-oxygen bonds and the electrophilic nature of surface metal-bonded oxygen sites; and simultaneously facilitate the adsorption of water molecules on catalyst surface, which accelerates the lattice-oxygen-involved reaction, thus improving the overall OER performance of RuIrCaOx catalyst.

11.
Adv Mater ; 32(8): e1906806, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31950562

RESUMEN

Oxygen evolution reaction (OER) catalysts that function efficiently in pH-neutral electrolyte are of interest for biohybrid fuel and chemical production. The low concentration of reactant in neutral electrolyte mandates that OER catalysts provide both the water adsorption and dissociation steps. Here it is shown, using density functional theory simulations, that the addition of hydrated metal cations into a Ni-Fe framework contributes water adsorption functionality proximate to the active sites. Hydration-effect-promoting (HEP) metal cations such as Mg2+ and hydration-effect-limiting Ba2+ into Ni-Fe frameworks using a room-temperature sol-gel process are incorporated. The Ni-Fe-Mg catalysts exhibit an overpotential of 310 mV at 10 mA cm-2 in pH-neutral electrolytes and thus outperform iridium oxide (IrO2 ) electrocatalyst by a margin of 40 mV. The catalysts are stable over 900 h of continuous operation. Experimental studies and computational simulations reveal that HEP catalysts favor the molecular adsorption of water and its dissociation in pH-neutral electrolyte, indicating a strategy to enhance OER catalytic activity.

12.
Angew Chem Int Ed Engl ; 59(6): 2273-2278, 2020 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-31743581

RESUMEN

Rechargeable aqueous zinc-ion batteries are attractive because of their inherent safety, low cost, and high energy density. However, viable cathode materials (such as vanadium oxides) suffer from strong Coulombic ion-lattice interactions with divalent Zn2+ , thereby limiting stability when cycled at a high charge/discharge depth with high capacity. A synthetic strategy is reported for an oxygen-deficient vanadium oxide cathode in which facilitated Zn2+ reaction kinetic enhance capacity and Zn2+ pathways for high reversibility. The benefits for the robust cathode are evident in its performance metrics; the aqueous Zn battery shows an unprecedented stability over 200 cycles with a high specific capacity of approximately 400 mAh g-1 , achieving 95 % utilization of its theoretical capacity, and a long cycle life up to 2 000 cycles at a high cathode utilization efficiency of 67 %. This work opens up a new avenue for synthesis of novel cathode materials with an oxygen-deficient structure for use in advanced batteries.

13.
Small ; 15(52): e1905903, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31769588

RESUMEN

Metal anodes, such as zinc and bismuth have been regarded as ideal materials for aqueous batteries due to high gravimetrical capacity, high abundance, low toxicity, and intrinsic safety. However, their translation into practical applications are hindered by the low mass loading (≈1 mg cm-2 ) of active materials. Here, the multiscale integrated structural engineering of 3D scaffold and active material, i.e., bismuth is in situ intercalated in reduced graphene oxide (rGO) wall of network, are reported. Tailoring the rapid charge transport on rGO 3D network and facile access to nano- and microscale bismuth, the rGO/Bi hybrid anode shows high utilization efficiency of 91.4% at effective high load density of ≈40 mg cm-2 , high areal capacity of 3.51 mAh cm-2 at the current density of 2 mA cm-2 and high reversibility of >10 000 cycles. The resulting Ni-Bi full battery exhibits high areal capacity of 3.13 mAh cm-2 at the current density of 2 mA cm-2 , far outperforming the other counterpart batteries. It represents a general and efficient strategy in enhancing the battery performance by designing hierarchically networked structure.

14.
Angew Chem Int Ed Engl ; 58(47): 16820-16825, 2019 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-31535447

RESUMEN

The electrocatalytic urea oxidation reaction (UOR) provides more economic electrons than water oxidation for various renewable energy-related systems owing to its lower thermodynamic barriers. However, it is limited by sluggish reaction kinetics, especially by CO2 desorption steps, masking its energetic advantage compared with water oxidation. Now, a lattice-oxygen-involved UOR mechanism on Ni4+ active sites is reported that has significantly faster reaction kinetics than the conventional UOR mechanisms. Combined DFT, 18 O isotope-labeling mass spectrometry, and in situ IR spectroscopy show that lattice oxygen is directly involved in transforming *CO to CO2 and accelerating the UOR rate. The resultant Ni4+ catalyst on a glassy carbon electrode exhibits a high current density (264 mA cm-2 at 1.6 V versus RHE), outperforming the state-of-the-art catalysts, and the turnover frequency of Ni4+ active sites towards UOR is 5 times higher than that of Ni3+ active sites.

15.
Angew Chem Int Ed Engl ; 57(49): 16114-16119, 2018 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-30315718

RESUMEN

Enhancing the p-orbital delocalization of a Bi catalyst (termed as POD-Bi) via layer coupling of the short inter-layer Bi-Bi bond facilitates the adsorption of intermediate *OCHO of CO2 and thus boosts the CO2 reduction reaction (CO2 RR) rate to formate. X-ray absorption fine spectroscopy shows that the POD-Bi catalyst has a shortened inter-layer bond after the catalysts are electrochemically reduced in situ from original BiOCl nanosheets. The catalyst on a glassy carbon electrode exhibits a record current density of 57 mA cm-2 (twice the state-of-the-art catalyst) at -1.16 V vs. RHE with an excellent formate Faradic efficiency (FE) of 95 %. The catalyst has a record half-cell formate power conversion efficiency of 79 % at a current density of 100 mA cm-2 with 93 % formate FE when applied in a flow-cell system. The highest rate of the CO2 RR production reported (391 mg h-1 cm2 ) was achieved at a current density of 500 mA cm-2 with formate FE of 91 % at high CO2 pressure.

16.
ACS Appl Mater Interfaces ; 10(4): 3624-3633, 2018 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-29308871

RESUMEN

For photoelectrochemical (PEC) water splitting, the interface interactions among semiconductors, electrocatalysts, and electrolytes affect the charge separation and catalysis in turn. Here, through the changing of the bath temperature, Co-based oxygen evolution catalysts (OEC) with different crystallinities were electrochemically deposited on Ti-doped Fe2O3 (Ti-Fe2O3) photoanodes. We found: (1) the OEC with low crystallinity is highly ion-permeable, decreasing the interactions between OEC and photoanode due to the intimate interaction between semiconductor and electrolyte; (2) the OEC with high crystallinity is nearly ion-impermeable, is beneficial to form a constant buried junction with semiconductor, and exhibits the low OEC catalytic activity; and (3) the OEC with moderate crystallinity is partially electrolyte-screened, thus contributing to the formation of ideal band bending underneath surface of semiconductor for charge separation and the highly electrocatalytic activity of OEC for lowering over-potentials of water oxidation. Our results demonstrate that to balance the water oxidation activity of OEC and OEC-semiconductor interface energetics is crucial for highly efficient solar energy conversion; in particular, the energy transducer is a semiconductor with a shallow or moderate valence-band level.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...